0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Pixel-Level Crack Detection and Quantification of Nuclear Containment with Deep Learning

Author(s): ORCID

ORCID


Medium: journal article
Language(s): English
Published in: Structural Control and Health Monitoring, , v. 2023
Page(s): 1-19
DOI: 10.1155/2023/9982080
Abstract:

Crack detection based on deep learning is an advanced technology, and many scholars have proposed many methods for the segmentation of pavement cracks. However, due to the difference of image specifications and crack characteristics, some existing methods are not effective in detecting cracks of containment. To quickly detect cracks and accurately extract crack quantitative information, this paper proposes a crack detection model, called MA_CrackNet, based on deep learning and a crack quantitative analysis algorithm. MA_CrackNet is an end-to-end model based on multiscale fusions that achieve pixel-level segmentation of cracks. Experimental results show that the proposed MA_CrackNet has excellent performance in the crack detection task of nuclear containment, achieving a precision, recall, F1, and mean intersection-over-union (mIoU) of 86.07%, 89.96%, 87.97%, and 89.19%, respectively, outperforming other advanced semantic segmentation models. The quantification algorithm automatically measures the four characteristic indicators of the crack, namely, the length of the crack, the area, the maximum width, and the mean width and obtains reliable results.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1155/2023/9982080.
  • About this
    data sheet
  • Reference-ID
    10734838
  • Published on:
    03/09/2023
  • Last updated on:
    03/09/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine