0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Piezoelectric adaptive active vibration suppression for wind-tunnel model support sting

Author(s): ORCID
ORCID


Medium: journal article
Language(s): English
Published in: Smart Materials and Structures, , n. 8, v. 33
Page(s): 085020
DOI: 10.1088/1361-665x/ad5e4f
Abstract:

Due to flow separation and turbulence, the slender cantilever aircraft model support system is prone to low-frequency and large-amplitude resonance in the wind tunnel tests, resulting in a decrease in test data quality, a limited test envelope, and even threatening the safe operation of the wind tunnel. A piezoelectric active damping system based on the filtered-x least mean square algorithm is proposed to effectively suppress the vibration of the wind-tunnel model support sting. Firstly, a modified variable step least mean square algorithm is proposed to address the issue that the fixed-step algorithms limit each other in terms of convergence speed and steady-state error. Following that, a variable step filtered-x least mean square algorithm based on reference signal reconstruction is developed, and the corresponding feedback controller is designed to perform the ground tests of the piezoelectric active damping system for the wind-tunnel model support sting. The experimental results show that the proposed algorithm has a faster convergence speed and lower steady-state error than the traditional algorithms, as well as strong anti-noise and adaptive control abilities that significantly improve the active vibration suppression effect of the wind-tunnel model support sting.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1088/1361-665x/ad5e4f.
  • About this
    data sheet
  • Reference-ID
    10790660
  • Published on:
    01/09/2024
  • Last updated on:
    01/09/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine