0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Photocatalytic TiO2-Based Coatings for Mortars on Facades: A Review of Efficiency, Durability, and Sustainability

Author(s): ORCID
ORCID


Medium: journal article
Language(s): English
Published in: Buildings, , n. 1, v. 13
Page(s): 186
DOI: 10.3390/buildings13010186
Abstract:

Due to the urgent need for a more sustainable built environment and actions against climate change, this paper presents a literature review about photocatalytic TiO2-based thin layers to be applied on mortars in facades. Photocatalysis may be a potential strategy against current environmental and climate challenges by transforming or eliminating hazardous greenhouse gases from the atmosphere. The main subjects researched were the coatings’ efficiency (which encompassed their self-cleaning ability, depolluting effect, and antimicrobial properties), durability, and sustainability. The method was based on the systematic literature review approach. Self-cleaning ability was the most recurrent topic retrieved from published studies, followed by depolluting effect and durability. There are few investigations about antimicrobial properties considering TiO2-coated mortars in facades. However, sustainability studies through Life Cycle Assessment and Life Cycle Costing represented the most significant gap, even requiring broader surveys. The photocatalytic activity of the coatings is well-proven in the literature, although specific evaluations may be needed for each coating composition and testing condition to understand their performance. The type of contamination agents, TiO2 dispersion and characteristics, dopants, nanocomposites, and substrate are among the principal agents influencing the results; therefore, caution must be taken when comparing research. Mainly, adhesion and photocatalytic efficiency after ageing were studied on durability. More field exposures may be recommended. Regarding the trade-offs concerning the environmental impacts of TiO2-based coatings, it is urgent to clarify whether their overall outcome is indeed advantageous and to investigate their resilience regarding climate change scenarios.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10712688
  • Published on:
    21/03/2023
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine