0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Performance of Special-Shaped Concrete-Filled Square Steel Tube Column under Axial Compression

Author(s):



Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2020
Page(s): 1-16
DOI: 10.1155/2020/1763142
Abstract:

The axial compressive performance of novel L-shaped and T-shaped concrete-filled square steel tube (L/T-CFSST) column was assessed in this study. Ten L/T-CFSST columns were tested to failure under axial load. The experimental data were used to determine various failure modes, bearing capacities, and load-displacement curves. The test parameters included the section form, steel tube thickness, steel yield strength, and slenderness ratio. The axial compressive performance of the L/T-CFSST column proved favorable, and each square steel tube showed strong cooperative performance. The failure mode of the stub column specimen (H/D ≤ 3) was strength failure caused by local buckling of the steel tube and that of the medium-long column member (H/D > 3) was instability failure caused by overall bending of the specimen. A finite element analysis (FEA) model was established and successfully validated by comparison against the test results. Based on the FEA model, parametric analyses were conducted to investigate the effects of steel tube thickness, concrete strength, steel yield strength, and slenderness ratio. The ultimate loads obtained from the experiments and FEA were compared to the results calculated by the available design codes. A formula was established to calculate the axial compressive strength and stability bearing capacity of the L/T-CFSST column accordingly. The calculation results are in close agreement with the FEA and experimental results, and the proposed formula may provide a workable reference for practicing engineers.

Copyright: © 2020 Zhen Wang et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10427980
  • Published on:
    30/07/2020
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine