0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Performance of High Strength Concrete Containing Palm Oil Fuel Ash and Metakaolin as Cement Replacement Material

Author(s): ORCID
ORCID
ORCID
ORCID
ORCID

Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2022
Page(s): 1-11
DOI: 10.1155/2022/6454789
Abstract:

The release of carbon dioxide (CO2) from the cement industry into the atmosphere and the increasing amount of oil palm waste from industrial plants lead to the problem of the greenhouse effect and environmental pollution. Studies on palm fuel ash (POFA) and metakaolin (MK) as a semi-substitute for cement can reduce the problem of the greenhouse effect and environmental pollution, as well as increase and improve the level of strength of concrete. Using mechanical and transport test methods as well as assisted by comparative X-ray Diffraction (XRD) analysis can prove the use of pozzolanic material as a catalyst to the compressive strength of concrete. In this study, slump test, compressive strength test, and water absorption test were conducted on samples containing total cement substitution up to 40% of POFA and MK as cement substitutes. The partial replacement of cement with MK and POFA reduced the workability of the concrete. However, binary and ternary blended concrete containing MK and POFA provide better compressive strength compared to OPC concrete up to 9.5% after 28 days age. Moreover, it was found that, the compressive strength of concrete containing POFA was better than the concrete containing MK up to 4%.

Copyright: © Mohd Hanif Ismail et al. et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10679051
  • Published on:
    18/06/2022
  • Last updated on:
    10/11/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine