0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Performance of Bio Concrete by Using Bacillus Pasteurii Bacteria

Author(s):


Medium: journal article
Language(s): English
Published in: Civil Engineering Journal, , n. 8, v. 6
Page(s): 1443-1456
DOI: 10.28991/cej-2020-03091559
Abstract:

In concrete, cracking is a common phenomenon due to its relatively low tensile strength‎ ‎, which occurs due to external loads and imposed deformations‎‎. The main research objective is to create a kind of self-healing concrete by employing mineral producing bacteria Bacillus pasteurii‎ to locate the rift in the most favourable circumstances for autogenous healing to take place. Self-healing concrete containing bacteria has been generated for this study through the application of bacterial self-healing elements as ‎spores ‎and nutrients with different percentages of bacteria ranging from (10% - 25%) as a replacement of mixing water is added at the time of pouring. The bacteria influence was observed by Scanning Electron Microscope (SEM) and with Energy ‎Dispersive X-ray Spectrometer. The mechanical properties and durability of a thirty-five mixture were ‎examined. The optimal blending content proportion was ‎10SF20BC, which showed an increment in compressive strength and flexural strength compared to the control mixture ‎to ‎reach 79.16%, 50% respectively and 24.38% enhancement in sulfate resistance. The highest percentage of calcium carbonate precipitations was ‎9.49% of a weight of ‎mixtures ‎elements, which, in turn, revealed the highest area repair rate, which was able to fill the ‎crack with widths leads to 0.80 mm.

Copyright: © 2020 Gehad A. M. Metwally, Mohamed Mahdy, Ahmed El-Raheem H. Abd El-Raheem
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10429351
  • Published on:
    14/08/2020
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine