Performance Analysis of 3D Concrete Printing Processes through Discrete-Event Simulation
Author(s): |
Eric Forcael
Paula Martínez-Chabur Iván Ramírez-Cifuentes Rodrigo Garcia-Alvarado Francisco Ramis Alexander Opazo-Vega |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 23 May 2023, n. 6, v. 13 |
Page(s): | 1390 |
DOI: | 10.3390/buildings13061390 |
Abstract: |
Three-dimensional concrete printing is a technique that has been growing constantly, presenting advantages such as reduced completion times and a decreased environmental impact by eliminating the use of formworks. To carry out the process, the printing path of the extruded material and the movement of a robot must be programmed. Thus, the present research simulated these 3D concrete printing processes in a small 2-floor building of 309.06 m² and then in a 12-floor building of 10,920 m². To analyze the 3D printing process, discrete-event simulation was used while considering different variables such as extrusion speed and the locations of a robot mounted on tracks. The results show that when comparing the time taken for a conventional construction system to construct concrete walls and the maximum duration for 3D-printed walls, this method is 45% faster than traditional construction for a small building, but for a big building, there is a difference of 40% in favor of conventional construction; however, this was when using only 1 robot for the whole building. After running the same analyses but using 3 robots instead of 1, the total 3D concrete printing time for the big building was 80% faster in favor of the 3D concrete printing process. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
12.54 MB
- About this
data sheet - Reference-ID
10728190 - Published on:
30/05/2023 - Last updated on:
01/06/2023