0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Parametric Analysis of Steel Studs to Reduce Thermal Bridges in Light Steel Framing Construction Systems

Author(s): ORCID
ORCID
ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 2, v. 15
Page(s): 194
DOI: 10.3390/buildings15020194
Abstract:

Thermal bridges significantly affect the thermal performance of light steel framing systems due to the high thermal conductivity of steel. The objective of this study is to identify modifications on the steel profiles to reduce heat flux and improve the thermal resistance of both single- and double-layer wall panels. Three approaches were analyzed: (i) slotted steel studs, (ii) integration of less-conductive materials into the web section, and (iii) modifications to web geometry. A numerical model was calibrated based on experimental data and used to perform dynamic simulations with different configurations. Results show that incorporating less-conductive materials, such as rigid polyamide, achieved a heat flux reduction of up to 98%, while optimized slotted patterns reduced heat flux by up to 90%. The results also demonstrated that all web modifications effectively reduced heat flux through the wall, with approaches (i) and (ii) showing the greatest impact. The shape of the slots also has an important impact on the heat flux. The most effective strategy for enhancing the thermal performance of the steel studs was the use of a less-conductive material.

Copyright: © 2025 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10815899
  • Published on:
    03/02/2025
  • Last updated on:
    03/02/2025
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine