0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

A parallel piezoelectric micro-perforated panel absorber with flexible acoustic characteristics

Author(s): ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Smart Materials and Structures, , n. 1, v. 33
Page(s): 017001
DOI: 10.1088/1361-665x/ad1264
Abstract:

In this paper, the sound absorption characteristics of a parallel micro-perforated panel absorber (MPPA) fabricated from polyvinylidene fluoride (PVDF) piezoelectric film are studied under an alternating voltage excitation. The simulation and experimental results show that when a certain frequency of AC voltage is applied to the parallel micro-perforated panel, the sound absorption characteristics of the MPPA at the excitation frequency can be improved due to the electrically induced vibration. With an increase in the alternating voltage amplitude, the improvement in sound absorption characteristics is more obvious. Therefore, the sound absorption coefficient of parallel PVDF-MPPA in the target frequency band can be improved by adjusting the parameters of excitation voltage reasonably. Based on the convenience of voltage regulation, this method is very suitable for suppressing the noise of the main frequency fluctuation without changing the structural parameters of the absorber. More importantly, the parallel PVDF-MPPA can apply voltage excitations of different parameters simultaneously, which is beneficial to improve the sound absorption effect in a wider frequency band. This study may provide a reference for the design of intelligent absorbers, especially for noise reduction structures in narrow spaces.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1088/1361-665x/ad1264.
  • About this
    data sheet
  • Reference-ID
    10748398
  • Published on:
    14/01/2024
  • Last updated on:
    14/01/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine