0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

PAN/MXene/ZnS:Cu composites fibers with enhanced piezoelectric and energy storage performance for development of flexible piezoelectric sensors

Author(s):


ORCID



Medium: journal article
Language(s): English
Published in: Smart Materials and Structures, , n. 9, v. 32
Page(s): 095018
DOI: 10.1088/1361-665x/aceb43
Abstract:

Electrospun nanofibers are widely used in flexible piezoelectric sensors. However, producing multifunctional sensors with comprehensive coverage and high sensitivity remains challenging. In this work, we designed a multifunctional and flexible piezoelectric sensor. We obtained polyacrylonitrile (PAN)/MXene/ZnS:Cu nanofibers by electrospinning, while the diameter of the nanofibers was characterized by using scanning electron microscopy, x-ray diffraction spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. X-ray diffraction and FTIR spectroscopy showed that the synergistic effect of MXene and ZnS:Cu promotes the content of planar zigzag conformation of PAN (94.16%). The ferroelectric and mechanical properties of the nanofibers were characterized by ferrometry and stretching, and their energy storage efficiency reached 94.05%, and the elongation at break increased to 97.5%. The piezoelectric sensor was fabricated with PAN/MXene/ZnS:Cu nanofibers. Under less pressure (0.098–1.96 N), it had a sensitivity of 2.46 V N−1, and at a frequency of 3 Hz, using a slight force percussion, its output voltage reached 10 V, which was twice that of pure PAN nanofibers. The output current was 50 μA. Its good sensitivity could be used to detect small body movement signals. Our results showed that PAN/MXene/ZnS:Cu nanofibers can fabricate multifunctional sensors, and the excellent performance of the piezoelectric sensor makes it have great application potential in the next generation of wearable electronic products.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1088/1361-665x/aceb43.
  • About this
    data sheet
  • Reference-ID
    10734203
  • Published on:
    03/09/2023
  • Last updated on:
    03/09/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine