0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Optimizing the Design of Container House Walls Using Argon and Recycled Plastic Materials

Author(s): ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 12, v. 14
Page(s): 3944
DOI: 10.3390/buildings14123944
Abstract:

Interest in the use of container houses has been increasing in recent years because of their resistance to earthquakes and fires. The incorporation of recyclable materials into these houses will simultaneously reduce energy use and greenhouse gas emission rates. In this context, the thermal performance of an external multi-layer wall of a container house mostly made of recyclable materials is studied and compared to that of a normal wall. The current study proposes a completely new structure, where there are air gaps and plastic layers between the steel sheets to enhance thermal insulation. In these gaps, different gases including argon are tested to reduce the heat loss. Calculations are carried out for a steady-state case in the winter season using the student version of ANSYS 2023 R2 Academic software, and the heat loss is calculated for different materials and different thicknesses of the wall layers. Afterward, based on a life-cycle cost analysis, the optimum air gap materials, optimum thickness of plastic and air gap, and energy savings are determined for a period of 20 years. We found that the optimum number of plastic layers to minimize the heating load is 21, but this reduces to 11 when considering economic factors. Furthermore, if a reflective layer covers the plastic layer, the optimum is just one layer. For an insulation thickness of 2 cm, the maximum total life-cycle savings are 335.14 and 350.52 USD, respectively, and the minimum ones are 16.06 and 31.44 USD, respectively, for multi-layer walls with and without reflective layers compared to conventional walls.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10810600
  • Published on:
    17/01/2025
  • Last updated on:
    17/01/2025
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine