Optimizing Indoor Microclimate and Thermal Comfort Through Sorptive Active Elements: Stabilizing Humidity for Healthier Living Spaces
Author(s): |
Jitka Peterková
Jirí Zach Vítězslav Novák Azra Korjenic Abdulah Sulejmanovski Eldira Sesto |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 18 December 2024, n. 12, v. 14 |
Page(s): | 3836 |
DOI: | 10.3390/buildings14123836 |
Abstract: |
This paper investigates the potential use of natural materials and elements for stabilizing indoor humidity levels, focusing on creating healthier living environments in buildings. Unstable indoor microclimates, particularly extreme humidity levels, can negatively affect human health by causing issues such as condensation, mold growth, or dry mucous membranes. In this work, we explore how sorptive materials can maintain indoor humidity within the optimal range of 40–50%. The aim is to identify optimal solutions for moisture control using passive elements, such as unfired ceramic components, which demonstrate high sorption activity within the 35–55% relative humidity range. These elements can effectively absorb moisture from, or release it back into, the indoor environment as needed. Five clay types based on different clay minerals were analyzed in the research in order to assess how their structures influence moisture adsorption behavior. These elements can be combined with green/active elements and standard measures, such as ventilation or targeted room air exchange, to improve indoor humidity regulation. The evaluation of the results so far indicates that the use of clay-based elements in the interior offers a sustainable and natural approach to maintaining optimal indoor microclimate conditions. The slab elements from all 5 clay formulations investigated effectively support indoor humidity stabilization. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
12.19 MB
- About this
data sheet - Reference-ID
10810138 - Published on:
17/01/2025 - Last updated on:
17/01/2025