Optimizing Building Orientation and Roof Angle of a Typhoon-Resilient Single-Family House Using Genetic Algorithm and Computational Fluid Dynamics
Author(s): |
Jun L. Mata
Jerson N. Orejudos Joel G. Opon Sherwin A. Guirnaldo |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 13 January 2023, n. 1, v. 13 |
Page(s): | 107 |
DOI: | 10.3390/buildings13010107 |
Abstract: |
In the event of a typhoon, the majority of houses suffer from large amounts of damage because they were not built with typhoon resilience in mind. For instance, the Philippines is one of the world’s most vulnerable countries to typhoons. Often, roof structures are ripped off during typhoons with average or more vigorous wind gustiness, and houses are easily ruined. This situation led us to search for the appropriate building orientation and roof angle of single-family residential houses through simulations using MATLAB’s genetic algorithm (GA) and SolidWorks’ computational fluid dynamics (CFD). The GA provides the set of design points, while CFD generates a fitness score for each design point. The goal of the optimization is to determine the orientation and roof angle while minimizing the drag force along the direction of a constant wind speed (315 km/h). The lower and upper bounds for house orientation are 0∘ and 90∘, respectively; the roof angle is between 3∘ and 60∘. After 100 generations, the GA converged to values equal to an 80∘ orientation and 11∘ roof angle. The final results provide a good standpoint for future experiments on physical structures. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
2.31 MB
- About this
data sheet - Reference-ID
10712557 - Published on:
21/03/2023 - Last updated on:
10/05/2023