Optimization of VEDs for Vibration Control of Transmission Line Tower
Author(s): |
Guoping Huang
Jianhua Hu Yuzhu He Haibo Liu Xiugui Sun |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Advances in Civil Engineering, January 2021, v. 2021 |
Page(s): | 1-13 |
DOI: | 10.1155/2021/9060414 |
Abstract: |
This paper investigates the optimization of viscoelastic dampers (VEDs) for vibration control of a transmission line tower. Considering the stiffness of the steel brace connected to a VED, the mechanical model of the VED-brace system was established. Subsequently, the additional modal damping ratio of the transmission line tower attached with VEDs was obtained analytically. Furthermore, the finite element model of a two-circuit transmission line tower with VEDs was built in ANSYS software, and the influences of installation positions and parameters of VEDs on the additional modal damping ratio were clarified. In addition, the control performance of VEDs on the transmission line tower subjected to wind excitations was emphatically illustrated. The results show that the stiffness of the steel brace connected to a VED has a significant effect on the maximum additional modal damping ratio of the VED-brace system provided for the transmission line tower and the optimal parameters of the VED. Meanwhile, the installation positions of VEDs dramatically influence the additional modal damping ratio. Moreover, the increase of the brace stiffness and the loss factor is beneficial to improve the control performance of VEDs. Besides that, the VEDs present superior control performance on the top displacement of the transmission line tower as well as the transverse bending vibration energy. |
Copyright: | © Guoping Huang et al. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
2.21 MB
- About this
data sheet - Reference-ID
10638256 - Published on:
30/11/2021 - Last updated on:
17/02/2022