0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Optimization of Tuff Stones Content in Lightweight Concrete Using Artificial Neural Networks

Author(s):




Medium: journal article
Language(s): English
Published in: Civil Engineering Journal, , n. 11, v. 9
Page(s): 2823-2833
DOI: 10.28991/cej-2023-09-11-013
Abstract:

Tuff stones are volcanic sedimentary rocks formed by the consolidation of volcanic ash. They possess unique geological properties that make them attractive for a variety of construction and architectural applications. Considerable amounts and various types of Tuff stones exist in the eastern part of Jordan. However, the use of Tuff stones often requires experimental investigations that can significantly impact the accuracy of their physical and mechanical characteristics. To ensure consistent and predictable properties in their mix design, it is essential to minimize the effects of these experimental procedures. Artificial neural networks (ANNs) have emerged as a promising tool to address such challenges, leveraging their ability to analyze complex data and optimize concrete mix design. In this research, ANNs have been used to predict the optimum content of Tuff fine aggregate to produce structural lightweight concrete with a wide range (20 to 50 MPa) of compressive strength. Three different types of Tuff aggregates, namely gray, brown, and yellow Tuff, were experimentally investigated. A set of 68 mixes was produced by varying the fine-tuff aggregate content from 0 to 50%. Concrete cubes were cast and tested for their compressive strength. These samples were then used to form the input dataset and targets for ANN. ANN was created by incorporating the recent advancements in deep learning algorithms, and then it was trained, validated using data collected from the literature, and tested. Both experimental and ANN results showed that the optimum content of the various types of used Tuff fine aggregate ranges between 20 to 25%. The results revealed that there is a clear agreement between the predicted values using ANN and the experimental ones. The use of ANNs may help to cut costs, save time, and expand the applications of Tuff aggregate in lightweight concrete production. 

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.28991/cej-2023-09-11-013.
  • About this
    data sheet
  • Reference-ID
    10756589
  • Published on:
    08/01/2024
  • Last updated on:
    08/01/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine