0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Optimization of Supply Air Parameters Control Based on Gappy POD Method for Creating Non-Uniform Temperature Fields

Author(s):





Medium: journal article
Language(s): English
Published in: Buildings, , n. 7, v. 13
Page(s): 1690
DOI: 10.3390/buildings13071690
Abstract:

This paper explores the implementation and application of non-uniform ambient fields from two perspectives: constant heat source and abrupt heat source variation. On the one hand, the proper orthogonal decomposition (POD) method is used to find the optimum air supply parameters for different target temperatures at multiple demand points. The one-parameter, two-parameter and three-parameter cases were considered, respectively, and the parameters obtained from the search for optimisation were verified, yielding mean deviations of 0.405 K, 0.368 K and 0.380 K and mean errors of 1.48%, 1.61% and 1.68%, respectively. The accuracy of the reconstructed results of the POD method and the reliability of the POD method for finding the best results are verified step by step with the help of the experimental platform. The validation results show that the average error between the reconstructed data and the experimental data for the POD method does not exceed 5%; the average errors between the measured and set demand temperatures at the target point are 1.2% and 0.8%. On the other hand, the gappy POD method is used to accurately fill in the elements of the system with arbitrary missing data and to reconstruct the flow field in the presence of missing (gappy) data with a limited number of sensors combined with POD. The errors of the gappy POD method reconstruction are 0.54% and 1.75%. POD and gappy POD methods can better create non-uniform temperature fields in practical scenarios according to actual needs. The results of the study can provide a methodological reference for real-time reconstruction and real-time control of the indoor flow field environment. It also serves as a help and suggestion for the actual project in terms of end-regulation system and reverse design method.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10737413
  • Published on:
    03/09/2023
  • Last updated on:
    14/09/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine