Optimization of Shear Resistance in Horizontal Joints of Prefabricated Shear Walls through Post-Cast Epoxy Resin Concrete Applications
Author(s): |
Peiqi Chen
Shilong Zhao Pengzhan Xu Xiaojie Zhou Yueqiang Li |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 8 October 2024, n. 10, v. 14 |
Page(s): | 3119 |
DOI: | 10.3390/buildings14103119 |
Abstract: |
The horizontal joint is a critical component of the prefabricated shear wall structure, responsible for supporting both horizontal shear forces and vertical loads along with the wall, thereby influencing the overall structural performance. This study employs direct shear testing and finite element analysis to investigate the horizontal joint in walls with ring reinforcement. It examines the impact of various factors on joint shear performance, including the type of joint material, joint configuration, buckling length of ring reinforcement, strength of precast concrete, reinforcement ratio of ring reinforcement and dowel bars, and the effect of horizontal binding force. The findings indicate that the shear bearing capacity and stiffness of joints incorporating post-cast epoxy resin concrete and keyways are comparable or superior to those of integrally cast specimens. A larger buckling length in ring reinforcement may reduce shear strength, suggesting an optimal buckling length at approximately one-third of the joint width. As the strength of precast concrete increases, ductility decreases while bearing capacity increases, initially at an increasing rate that subsequently declines. Optimal results are achieved when the strength of precast concrete closely matches that of the post-cast epoxy concrete. Enhancing the reinforcement ratio of ring reinforcement improves shear capacity, but excessively high ratios significantly reduce ductility. It is recommended that the diameter of ring reinforcement be maintained between 10 mm and 12 mm, with a reinforcement ratio between 0.79% and 1.13%. Increasing horizontal restraint enhances stiffness and shear capacity but reduces ductility; thus, the axial compression ratio should not exceed 0.5. |
- About this
data sheet - Reference-ID
10804522 - Published on:
10/11/2024 - Last updated on:
10/11/2024