Optimization of Cast-Steel Tubular Circular-Hollow-Section Connections Based on Depth-First Search Algorithm
Author(s): |
Kaien Jiang
Ziming Yang Ju Chen Guoer Lv Huafeng Yu |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 15 January 2025, n. 2, v. 15 |
Page(s): | 286 |
DOI: | 10.3390/buildings15020286 |
Abstract: |
This study introduces a novel design for a cast-steel joint in the shape of a T, aimed at resolving concerns regarding stress concentration at points where geometric intersections occur and enhancing the quality of welding in T-shaped welded joints. The proposed integrated design framework greatly facilitated the successful construction of a three-dimensional joint between a brace and a chord at a T-shaped node. The geometric parameters of curves in the connector were optimized using a depth-first search algorithm, resulting in control points for the optimized curve. Computer-aided design software was then employed to obtain the refined connector. The design framework has the ability to produce designs with smooth and uninterrupted boundaries, making them highly compatible with traditional casting methods and effectively tackling the manufacturing challenges related to topology optimization. The numerical simulation results demonstrate that, in comparison to traditionally welded T-joints of the same size, the stress concentration factor of the optimized joints exhibits a significant reduction, accompanied by a notable disparity in stress distribution. Moreover, the impact of the thickness of the brace and the axial compression ratio on the stress concentration factor of the optimized joints was relatively insignificant. The stress concentration factor of the cast-steel joint was reduced by more than 84%, leading to a significant enhancement in fatigue performance. |
Copyright: | © 2025 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
5.05 MB
- About this
data sheet - Reference-ID
10815912 - Published on:
03/02/2025 - Last updated on:
03/02/2025