Optimization Design for Steel Trusses Based on a Genetic Algorithm
Author(s): |
Pengcheng Li
Xuxiang Zhao Dangsheng Ding Xiwei Li Yanjun Zhao Lu Ke Xiaoyue Zhang Bin Jian |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 23 May 2023, n. 6, v. 13 |
Page(s): | 1496 |
DOI: | 10.3390/buildings13061496 |
Abstract: |
Steel trusses are widely utilized in engineering structures, and their optimization is essential for enhancing structural performance and reducing material consumption. Existing optimization methods for steel trusses predominantly rely on the trial-and-error method, which is not only inefficient but also inaccurate. Therefore, this study focused on the optimization of steel trusses using an efficient and accurate optimization methodology. Based on a genetic algorithm and the finite element method, both mono- and multi-parameter optimization designs for steel trusses were executed, an applicable optimization design method for steel trusses was established, and corresponding optimization design programs were developed. The analysis demonstrates that the proposed optimization method effectively optimizes truss height and member cross-section, leading to a significant reduction in material consumption. Compared to the traditional trial-and-error method, the proposed optimization method exhibits adequate calculation accuracy and superior optimization efficiency, thereby providing a robust theoretical foundation for the engineering design of steel trusses. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
4.41 MB
- About this
data sheet - Reference-ID
10731728 - Published on:
21/06/2023 - Last updated on:
07/08/2023