0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Optimal Cluster Scheduling of Active–Reactive Power for Distribution Network Considering Aggregated Flexibility of Heterogeneous Building-Integrated DERs

Author(s):





Medium: journal article
Language(s): English
Published in: Buildings, , n. 11, v. 13
Page(s): 2854
DOI: 10.3390/buildings13112854
Abstract:

This paper proposes an active–reactive power collaborative scheduling model with cluster division for the flexible distributed energy resources (DERs) of smart-building systems to resolve the high complexity of the centralized optimal scheduling of massive dispersed DERs in the distribution network. Specifically, the optimization objective of each cluster is to minimize the operational cost, the power-loss cost, and the penalty cost for flexibility deficiency, and the second-order cone-based branch flow method is utilized to convert the power-flow equations into linearized cone constraints, reducing the nonlinearity and heavy computation burden of the scheduling model. Customized virtual battery models for building-integrated flexible DERs are developed to aggregate the power characteristics of flexible resources while quantifying their regulation capacities with time-shifting power and energy boundaries. Moreover, a cluster division algorithm considering the module degree index based on the electrical distance and the flexible balance contribution index is formulated for cluster division to achieve information exchange and energy interaction in the distribution network with a high proportion of building-integrated flexible DERs. Comparative studies have demonstrated the superior performance of the proposed methodology in economic merits and voltage regulation.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10754295
  • Published on:
    14/01/2024
  • Last updated on:
    07/02/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine