0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Optical sensors for the durability assessment of cement‐based infrastructure

Author(s): (Graz University of Technology, Institute of Applied Geosciences Graz Austria)
(Graz University of Technology, Institute of Analytical Chemistry and Food Chemistry Graz Austria)
(Graz University of Technology, Institute of Applied Geosciences Graz Austria)
(Graz University of Technology, Institute of Technology and Testing of Construction Materials Graz Austria)
(Graz University of Technology, Institute of Technology and Testing of Construction Materials Graz Austria)
(Graz University of Technology, Institute of Analytical Chemistry and Food Chemistry Graz Austria)
(Graz University of Technology, Institute of Analytical Chemistry and Food Chemistry Graz Austria)
(Graz University of Technology, Institute of Technology and Testing of Construction Materials Graz Austria)
(Graz University of Technology, Institute of Applied Geosciences Graz Austria)
Medium: journal article
Language(s): English
Published in: ce/papers, , n. 5, v. 6
Page(s): 1033-1036
DOI: 10.1002/cepa.2082
Abstract:

The corrosion‐related damages on concrete infrastructure account globally for several billion US dollars annually. Up to 38 % of these costs could be saved by the application of optimized materials and/or more efficient monitoring technologies. In this contribution a novel sensor technology is presented, based on luminescent pH sensitive dyes, to quantitatively determine the pH distribution in cement‐based construction materials. Different sensor platforms were explored resulting in high‐resolution imaging techniques, as well as in miniaturized sensor probes for field application and in situ monitoring. To this point, pH sensors were successfully applied for cementitious materials to (i) quantitatively characterize the carbonation state in the lab, (ii) gain further understanding on phase assemblages and internal pH evolution related to carbonation, (iii) reveal that the actual pH at the inflection point of phenolphthalein may strongly vary depending on physicochemical material properties, (iv) monitor the pH evolution during the early hydration of different cementitious materials, and (v) measure carbonation depths using miniaturized sensor probes adopted for field applications.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1002/cepa.2082.
  • About this
    data sheet
  • Reference-ID
    10766802
  • Published on:
    17/04/2024
  • Last updated on:
    17/04/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine