0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Online Bridge Structural Condition Assessment Based on the Gaussian Process: A Representative Data Selection and Performance Warning Strategy

Author(s): ORCID
ORCID
ORCID



Medium: journal article
Language(s): English
Published in: Structural Control and Health Monitoring, , v. 2024
Page(s): 1-18
DOI: 10.1155/2024/5579734
Abstract:

Data-driven methods have now been widely used in structural health monitoring of civil infrastructures thanks to the rapid development of sensor technologies with massive structural and operational condition data. One main issue of data-driven methods is that the computational time increases with the number of monitoring data used, which limits their applications for online structural condition assessment. Focusing on bridge structural health monitoring, this paper proposes a representative data selection strategy for online performance assessment based on Gaussian process models. The proposed method can effectively reduce the required monitoring data size for training, allowing the bridge performance assessment to be conducted in a real-time manner. The method is developed in a probabilistic manner, allowing associated uncertainty of bridge monitoring data to be rigorously considered. A probabilistic warning index is proposed for bridge condition assessment and anomaly detection. The proposed method is validated using synthetic data and applied to structural condition assessment of two full-scale bridges, illustrating the feasibility for real implementations.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1155/2024/5579734.
  • About this
    data sheet
  • Reference-ID
    10769969
  • Published on:
    29/04/2024
  • Last updated on:
    29/04/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine