0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

An online anomaly recognition and early warning model for dam safety monitoring data

Author(s):





Medium: journal article
Language(s): English
Published in: Structural Health Monitoring, , n. 3, v. 19
Page(s): 796-809
DOI: 10.1177/1475921719864265
Abstract:

Anomaly recognition and early warning of monitoring data are of great significance in the field of modern dam safety management. Multidimensional least-squares regression model with the Pauta criterion is a well-known traditional method, but it is easy to misjudge the normal value and miss the outliers. Thereby, an online robust recognition and early warning model combining robust statistics and confidence interval is proposed to detect outliers. The threshold [Formula: see text] is set based on the derived confidence interval [Formula: see text] and the scale estimator [Formula: see text] (derived from the location M-estimator). Monitoring data obtained from a gravity dam and a rockfill dam were taken as examples to demonstrate the robust recognition and early warning model. The results show that the proposed method can effectively improve the reliability of anomaly recognition and early warnings, which is valuable in engineering applications.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1177/1475921719864265.
  • About this
    data sheet
  • Reference-ID
    10562322
  • Published on:
    11/02/2021
  • Last updated on:
    19/02/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine