On the Location of Multiple Failure Slip Surfaces in Slope Stability Problems Using the Meshless SPH Algorithm
Author(s): |
Liang Li
Ming Zhai Xianzhang Ling Xuesong Chu Bin Hu Yungming Cheng |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Advances in Civil Engineering, January 2020, v. 2020 |
Page(s): | 1-8 |
DOI: | 10.1155/2020/6821548 |
Abstract: |
The occurrence of multiple critical slip surfaces with equal importance in rehabilitating and reinforcing slopes has been frequently observed in geotechnical engineering practices. The simultaneous determination of these potential slip surfaces is, however, not trivial. This paper presents a methodology based on the smoothed particle hydrodynamics (SPH) approach, which can simultaneously determine multiple failure slip surfaces and the debris flow process without previous knowledge or trial-and-error processes, and this methodology is validated against a slope with the presence of multiple critical slip surfaces. The proposed methodology serves as an efficient and effective alternative approach to traditional approaches, which involve cumbersome treatments performed by engineers based on their subjective experiences. The multiple sources of failure slip surfaces in slope stability are equivalent to multiple sources of initiation of slope failure, and it is found that SPH can provide a direct and systematic tool for identifying multiple failure slip surfaces. However, some minor potential problems are also found with the use of the SPH method in actual applications. |
Copyright: | © 2020 Liang Li et al. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
3.65 MB
- About this
data sheet - Reference-ID
10427181 - Published on:
13/07/2020 - Last updated on:
02/06/2021