On Reliability-Based Optimization in Rigid-Plastic Frame Design/Apie tikimybinę optimizaciją standžiųjų-plastinių rėmų skaičiavime
Author(s): |
Arnoldas Norkus
|
---|---|
Medium: | journal article |
Language(s): | Latvian |
Published in: | Journal of Civil Engineering and Management, March 1997, n. 9, v. 3 |
Page(s): | 78-81 |
DOI: | 10.3846/13921525.1997.10531675 |
Abstract: |
Straipsnyje nagrinėjamas duoto patikimumo diskretinės rėminės konstrukcijos projektavimo uždavinys. Konstrukcijos geometriniai parametrai, apkrovų pridėjimo, pavojingų pjūvių vietos yra apibrėžiamos fiksuotai (determinuotai). Išorinės apkrovos ir konstrukcijos medžiaga—stochastinės. Nagrinėjamas vienintelis galimas konstrukcijos suirimo tipas—plastinio suirimo mechanizmo susidarymas. Išorinės apkrovos apibūdinamos kaip kvazistatinės, nesukeliančios dinaminių efektų. Konstrukcijos įtempimų būvis charakterizuojamas lenkimo momentų vektoriumi M, i.e. neįvertinant šlyties ir sukimo efektų. Taigi konstrukcijos laikomoji galia apibūdinama ribinių lenkimo momentų vektoriumi M o, kurio komponentai priklauso nuo skerspjūvio charakteristikų ir medžiagos takumo ribos. Konstrukcijos plastinio suirimo mechanizmas apibūdinamas deformacijų (deviacijų) Θ ir poslinkių [udot] greičių vektoriais. Optimizacijos uždavinys (1)-(2) gali būti formuluojamas naudojantis kinematiniu ir statiniu principais. Naudojant kinematinį principą ribinį būvį aprašančios lygtys (4) išreiškiamos per deformacijų ir greičių vektorius. Atskirų plastinių suirimo mechanizmų tikimybės (5) yra nustatomos naudojant patikimumo indeksus β i . Šių mechanizmų identifikavimui sprendžiamas uždavinys (6)-(8). Šį uždavinj galima spręsti formuluojant jį kaip neiškiliojo matematinio programavimo uždavinį (9)-(10)—(7)-(8). Sprendinio lokalinius minimumus atitinka galimi suirimo mechanizmai, atitinkantys patikimumo indeksus β i . Nustaičus visus suirimo mechanizmus, atitinkančius reikiamą patikimumo lygį (3), sprendžiamas optimizacijos uždavinys (11)-(14). Sprendimo eiga: fiksuojant vektorių [Mbar] o sprendžiamas uždavinys (9)-(10)—(7)-(8), randami pagrindiniai plastiniai suirimo mechanizmai; po to sprendžiamas uždavinys (12)-(14). Šis iteracinis procesas kartojamas tol, kol pasiekiamas reikiamas konvergavimo tikslumas. Naudojant statinį principą, ribinį būvį apibūdina statinio leistinumo sąlygos. Pagal A.Čyro pasiūlytą sprendimo būdą optimizacijos uždavinys formuluojamas kaip matematinio programavimo uždavinys (16)-(21). Taip formuluojant uždavinį galima įvertinti ir kintamo plastiškumo sąlygotus suirimo būdus. Sprendžiant šį stochastinį uždavinį jis pakeičiamas determinuotu matematinio programavimo uždaviniu. Toks sprendimo būdas yra labiau taikytinas praktiniams projektavimo uždaviniams spręsti. |
Copyright: | © 1997 The Author(s). Published by VGTU Press. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
0.41 MB
- About this
data sheet - Reference-ID
10363902 - Published on:
12/08/2019 - Last updated on:
02/06/2021