0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Nutrient Release from Disturbance of Infiltration System Soils during Construction

Author(s):


Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2012
Page(s): 1-7
DOI: 10.1155/2012/393164
Abstract:

Subsurface infiltration and surface bioretention systems composed of engineered and/or native soils are preferred tools for stormwater management. However, the disturbance of native soils, especially during the process of adding amendments to improve infiltration rates and pollutant removal, may result in releases of nutrients in the early life of these systems. This project investigated the nutrient release from two soils, one disturbed and one undisturbed. The disturbed soil was collected intact, but had to be air-dried, and the columns repacked when soil shrinkage caused bypassing of water along the walls of the column. The undisturbed soil was collected and used intact, with no repacking. The disturbed soil showed elevated releases of nitrogen and phosphorus compared to the undisturbed soil for approximately 0.4 and 0.8 m of runoff loading, respectively. For the undisturbed soil, the nitrogen release was delayed, indicating that the soil disturbance accelerated the release of nitrogen into a very short time period. Leaving the soil undisturbed resulted in lower but still elevated effluent nitrogen concentrations over a longer period of time. For phosphorus, these results confirm prior research which demonstrated that the soil, if shown to be phosphorus-deficient during fertility testing, can remove phosphorus from runoff even when disturbed.

Copyright: © 2012 Daniel P. Treese et al.
License:

This creative work has been published under the Creative Commons Attribution 3.0 Unported (CC-BY 3.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10176984
  • Published on:
    07/12/2018
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine