Numerical Simulations of the Hall–Petch Relationship in Aluminium Using Gradient-Enhanced Plasticity Model
Author(s): |
Yooseob Song
Jaeheum Yeon Byoungjoon Na |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Advances in Civil Engineering, 2019, v. 2019 |
Page(s): | 1-9 |
DOI: | 10.1155/2019/7356581 |
Abstract: |
The Hall-Petch relation in aluminium is discussed based on the strain gradient plasticity framework. The thermodynamically consistent gradient-enhanced flow rules for bulk and grain boundaries are developed using the concepts of thermal activation energy and dislocation interaction mechanisms. It is assumed that the thermodynamic microstresses for bulk and grain boundaries have dissipative and energetic contributions, and in turn, both dissipative and energetic material length scale parameters are existent. Accordingly, two-dimensional finite element simulations are performed to analyse characteristics of the Hall–Petch strengthening and the Hall–Petch constants. The proposed flow rules for the grain boundary are validated using the existing experimental data from literatures. An excellent agreement between the numerical results and the experimental measurements is obtained in the Hall–Petch plot. In addition, it is observed that the Hall–Petch constants do not remain unchanged but vary depending on the strain level. |
Copyright: | © 2019 Yooseob Song et al. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
2.31 MB
- About this
data sheet - Reference-ID
10400202 - Published on:
12/12/2019 - Last updated on:
02/06/2021