0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Numerical Simulation Study on Mechanical Bearing Behavior of Arch Steel–Concrete Composite Sandwich Roof

Author(s):


Medium: journal article
Language(s): English
Published in: Buildings, , n. 1, v. 14
Page(s): 218
DOI: 10.3390/buildings14010218
Abstract:

In order to study the mechanical bearing behavior of arched sandwich roof structures, a full combination and independent action mode of concrete sandwich composite panels was constructed using the finite element method, and an arched steel–concrete composite sandwich roof with a span of 18 m was subjected to a numerical simulation test under a full-span vertical uniformly distributed load, with the bearing characteristics of the arched sandwich roof discussed in depth. The results show that the cross-sections of l/16 and l/2 of the elliptical arch sandwich roof are weak sections, and the tensile cracking of concrete appears for the first time in the upper and lower wythes of the elliptical arch sandwich roof, the von Mises stress level of the lower wythe of the l/16 section is higher under the ultimate load, and the roof shows four-part form failure characteristics. With the expansion of the cracking range of the upper and lower concrete wythes of the steel–concrete composite sandwich arch roof, the load–displacement curve of the roof structure does not decrease significantly, and the bearing capacity of the structure is high and the vertical deformation is small. The steel–concrete composite segment at the end of the roof effectively strengthens the edge constraint of the roof and improves the integrity of the sandwich roof. The upper and lower concrete wythes of the sandwich roof show a fully combined action mode in the elastic working stage and, when the concrete cracks, it shows a partial combined action mode.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10760239
  • Published on:
    23/03/2024
  • Last updated on:
    25/04/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine