0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Numerical Simulation of the Construction Process of Long Spiral CFG Piles

Author(s): ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2021
Page(s): 1-13
DOI: 10.1155/2021/6664474
Abstract:

A numerical model for the construction process of long spiral CFG piles is established based on the coupled Eulerian–Lagrangian method. The construction process is divided into drilling process and concrete pouring process for modeling. The influence of long spiral CFG piles construction on saturated sand foundation is studied, and dynamic responses, changes of pore water pressure, and void ratio of saturated sand foundation are obtained. The rationality and accuracy of the simulation results are proved by comparing with the field test data and calculation results of the theory of cylindrical cavity expansion. The presented numerical results prove that the vibration load generated during the construction acts on saturated soil in the form of irregular reciprocating shear forces, which leads to a large excess pore water pressure in the soil and an increase in soil void ratio. Both the excess pore water pressure field generated during the construction and the soil pore ratio after the construction show a parabolic distribution in the vertical direction. The research results can provide reference and theoretical basis for future research and engineering practice.

Copyright: © 2021 Taotao Wang and Siyi Du et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10589746
  • Published on:
    08/03/2021
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine