0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Numerical Simulation of Dynamic Stability of Fractional Stochastic Systems

Author(s):
Medium: journal article
Language(s): English
Published in: International Journal of Structural Stability and Dynamics, , n. 10, v. 18
Page(s): 1850128
DOI: 10.1142/s0219455418501286
Abstract:

The modern theory of stochastic dynamic stability is founded on two main exponents: the largest Lyapunov exponent and moment Lyapunov exponent. Since any fractional viscoelastic system is indeed a system with memory, data normalization during iterations will disregard past values of the response and therefore the use of data normalization seems not appropriate in numerical simulation of such systems. A new numerical simulation method is proposed for determining the [Formula: see text]th moment Lyapunov exponent, which governs the [Formula: see text]th moment stability of the fractional stochastic systems. The largest Lyapunov exponent can also be obtained from moment Lyapunov exponents. Examples of the two-dimensional fractional systems under wideband noise and bounded noise excitations are presented to illustrate the simulation method.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1142/s0219455418501286.
  • About this
    data sheet
  • Reference-ID
    10352164
  • Published on:
    10/08/2019
  • Last updated on:
    10/08/2019
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine