0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Numerical Simulation of a Floating Offshore Wind Turbine Incorporating an Electromagnetic Inerter-Based Device for Vibration Suppression and Wave Energy Conversion

Author(s): ORCID





Medium: journal article
Language(s): English
Published in: Structural Control and Health Monitoring, , v. 2023
Page(s): 1-18
DOI: 10.1155/2023/5513733
Abstract:

Offshore wind turbines (OWTs) are considered vital to the promotion of the development of renewable energy. Especially, floating OWTs can be deployed over a larger area than bottom-fixed OWTs. The floating OWTs, however, are vulnerable to vibration induced by disturbances and require a backup power supply in the case of power outage. On the one hand, various kinds of inerter-based devices have been proposed especially for vibration suppression of civil structures subjected to earthquake loadings. Recently, combined with electromagnetic devices, the inerter technologies have also been applied in the field of vibration energy harvesting such as point absorber wave energy converters. Thus, this paper proposes a novel floating OWT consisting of two bodies combined with inerter-based power take-off (PTO) devices which accomplishes vibration suppression and wave energy conversion at the same time. To investigate the vibration suppression and energy conversion capabilities of the proposed floating OWT with a variety of inerter-based PTO devices for ocean waves, numerical simulation studies employing WEC-Sim are conducted, and the performance of each system is compared for regular and irregular waves. Results show that the proposed floating OWT with the appropriately designed inerter-based PTO devices for the incident wave period has great potential for both vibration suppression and wave energy conversion in a specific frequency range.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1155/2023/5513733.
  • About this
    data sheet
  • Reference-ID
    10734834
  • Published on:
    03/09/2023
  • Last updated on:
    03/09/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine