Numerical Simulation and Optimization Design of End-Suspended Pile Support for Soil-Rock Composite Foundation Pit
Author(s): |
Qingchao Xu
Zhenhao Bao Tu Lu Huarui Gao Jiakang Song |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Advances in Civil Engineering, January 2021, v. 2021 |
Page(s): | 1-15 |
DOI: | 10.1155/2021/5593639 |
Abstract: |
In order to design the soil-rock combination foundation pit more safely and effectively, this paper presents the investigations of the mechanical and deformational characteristics of end-suspended piles supporting the structures in Jinan CBD area. Based on the measured data, a finite element model was established through the two-dimensional numerical simulation method to study the deformational characteristics of the end-suspended piles, and the influences of the depth of socketed rock, the width of rock shoulder, and the prestress of anchor cables on the deformations and mechanical property of end-suspended piles were discussed. Some optimization methods are proposed based on these analyses. Results show the following: (1) Rock-socketed depths have boundary effect on end-suspended piles. Under the given geological conditions, the reasonable socketed ratio is within 0.158∼0.200. (2) The anchor cable prestress can effectively slow down the ground settlement, the force, and deformation of the pile body and can be set to 1P∼1.25P under the conditions of the site. (3) Rock-shoulder width has little influence on the ground settlement and horizontal displacement of piles. The reserved width of rock shoulder is suggested to be selected in the range of 1.0 m∼1.5 m. |
Copyright: | © Qingchao Xu et al. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
2.18 MB
- About this
data sheet - Reference-ID
10613144 - Published on:
09/07/2021 - Last updated on:
17/02/2022