0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Numerical Modeling on Hydraulic Fracturing in Coal-Rock Mass for Enhancing Gas Drainage

Author(s):

Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2018
Page(s): 1-16
DOI: 10.1155/2018/1485672
Abstract:

The mechanism of how hydraulic fracturing influences gas drainage in coal-rock mass is still not clear due to its complex mechanism. In this work, statistical distributions are firstly introduced to describe heterogeneity of coal-rock mass; a novel simultaneously coupled mathematical model, which can describe the fully coupled process including seepage-damage coupling during hydraulic fracturing process and subsequent gas flow during gas drainage process, is established; its numerical implementation procedure is coded into a Matlab program to calculate the damage variables, and it partly uses COMSOL solver to obtain numerical solutions of governing equations with damage-flow coupling; the mathematical model and its implementation are validated for initial damage pressure and mode of a single solid model without considering flow-damage coupling, as well as fracture initiation pressure and influence of heterogeneity on damage evolution of hydraulic fracturing considering flow-damage coupling; and finally, based on an engineering practice of hydraulic fracturing with two boreholes, the mechanism of how hydraulic fracturing influences gas drainage is investigated, numerical simulation results indicate that coal-rock mass pore-fissure structure has been improved, and there would exist a gas migration channel with characteristics of higher porosity and lower stresses, which demonstrates significant effects and mechanism of hydraulic fracturing on improving coal-rock permeability and enhancing gas drainage. The research results provide a guide for operation of hydraulic fracturing and optimal layout of gas drainage boreholes.

Copyright: © 2018 Zhigang Yuan et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10236599
  • Published on:
    30/12/2018
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine