0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Numerical Investigation on Local Scour and Flow Field around the Bridge Pier under Protection of Perforated Baffle and Ring-Wing Plate

Author(s): ORCID




Medium: journal article
Language(s): English
Published in: Buildings, , n. 10, v. 12
Page(s): 1544
DOI: 10.3390/buildings12101544
Abstract:

In this paper, a series of numerical experiments are carried out on the anti-scour device combined with perforated baffle and ring-wing plate. In addition, the optimal dimensions and location of the combined device are obtained: The perforated ratio of the baffle is S = 20%, the distance from the center of the bridge pier is L = 2d (d is the diameter of the bridge pier), and the ring-wing plate is located at H = 1/3h (h is the water depth). To verify the effect of the anti-scour device, the scour characteristics and flow field are further investigated. Compared with single pier and single ring-wing plate, the results revealed that the combined device with the optimal dimensions is of great anti-scour performance. Moreover, the maximum scour depth at the front and side of the pier reduced by 84.20% and 78.95%, which is better than the single ring-wing plate and other combined conditions in the orthogonal experiments. Due to the diversion of perforated baffle and ring-wing plate, the flow velocity at the pier side near the bed surface decreases by 30.7%, and the down-flow is almost eliminated on the vertical plane. Furthermore, the turbulent kinetic energy at different horizontal and vertical planes is reduced due to the reduction in horseshoe vortex and wake flow. Based on the investigation presented herein, the combined device is a promising tool for mitigating scour around the bridge pier.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10699872
  • Published on:
    11/12/2022
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine