0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Numerical Investigation on Energy Efficiency of Heat Pump with Tunnel Lining Ground Heat Exchangers under Building Cooling

Author(s):




Medium: journal article
Language(s): English
Published in: Buildings, , n. 12, v. 11
Page(s): 611
DOI: 10.3390/buildings11120611
Abstract:

For mountain tunnels, ground heat exchangers can be integrated into the tunnel lining to extract geothermal energy for building heating and cooling via a heat pump. In recent decades, many researchers only focused on the thermal performance of tunnel lining GHEs, ignoring the energy efficiency of the heat pump. A numerical model combining the tunnel lining GHEs and heat pump was established to investigate the energy efficiency of the heat pump. The inlet temperature of an absorber pipe was coupled with the cooling load of GHEs in the numerical model, and the numerical results were calibrated using the in situ test data. The energy efficiency ratio (EER) of the heat pump was calculated based on the correlation of the outlet temperature and EER. The heat pump energy efficiencies under different pipe layout types, pipe pitches and pipe lengths were evaluated. The coupling effect of ventilation and groundwater flow on the energy efficiency of heat pump was investigated. The results demonstrate that (i) the absorber pipes arranged along the axial direction of the tunnel have a greater EER than those arranged along the cross direction; (ii) the EER increases exponentially with increasing absorber pipe pitch and length (the influence of the pipe pitch and length on the growth rate of EER fades gradually as wind speed and groundwater flow rate increase); (iii) the influence of groundwater conditions on the energy efficiency of heat pumps is more obvious compared with ventilation conditions. Moreover, abundant groundwater may lead to a negative effect of ventilation on the heat pump energy efficiency. Hence, the coupling effect of ventilation and groundwater flow needs to be considered for the tunnel lining GHEs design.

Copyright: © 2021 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10646937
  • Published on:
    10/01/2022
  • Last updated on:
    10/01/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine