0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Numerical Evaluation on Thermal Performance of 3D Printed Concrete Walls: The Effects of Lattice Type, Filament Width and Granular Filling Material

Author(s):
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 4, v. 14
Page(s): 926
DOI: 10.3390/buildings14040926
Abstract:

Three-dimensional concrete printing (3DCP) is of great interest to scientists and the construction industry to bring automation to structural engineering applications. However, studies on the thermal performance of three-dimensional printed concrete (3DPC) building envelopes are limited, despite their potential to provide a long-term solution to modern construction challenges. This work is a numerical study to examine the impact of infill geometry on 3DPC lattice envelope thermal performance. Three different lattice structures were modeled to have the same thickness and nearly equal contour lengths, voids, and insulation percentages. Additionally, the effects of filament width and the application of granular insulating materials (expanded polystyrene beads and loose-fill perlite) were also studied. Finally, the efficacy of insulation was established. Results show that void area affects the thermal performance of 3DPC envelopes under stagnant air conditions, while web length, filament width, and contact (intersection) area between the webs and face shells affect the thermal behavior when cavities are filled with insulating materials due to thermal bridging. The thermal efficiency of insulation, which shows the effective use of insulation, varies between 26 and 44%, due to thermal bridges.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10773381
  • Published on:
    29/04/2024
  • Last updated on:
    05/06/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine