0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Numerical and Experimental Investigations of Asphalt Pavement Behaviour, Taking into Account Interface Bonding Conditions

Author(s):

ORCID
Medium: journal article
Language(s): English
Published in: Infrastructures, , n. 2, v. 5
Page(s): 21
DOI: 10.3390/infrastructures5020021
Abstract:

The interface bond between layers plays an important role in the behavior of pavement structure. However, this aspect has not yet been adequately considered in the pavement analysis process due to the lack of advanced characterizations of actual condition. In many pavement design procedures, only completely bonded or unbounded interfaces between the layers are considered. For the purpose of the better evaluation of the asphalt pavement behavior, this work focused on its investigation taking into account the actual interface bonding condition between the asphalt layers. Based on the layered theory developed by Burmister (1943), the actual interaction between pavement layers was taken into account by introducing a horizontal shear reaction modulus which represents the interface bonding condition for a given state. The analytical solution was then implemented in a numerical program before doing forward calculations for sensitivity analysis which highlights the influence of the interface bonding conditions on the structural behaviors of asphalt pavement under a static load. Furthermore, the numerical program was applied through an original experimental case study where falling weight deflectometer (FWD) tests were carried out on two full-scale pavement structures with or without a geogrid at the interface between the asphalt layers. Backcalculations of the FWD measurements allowed determining field condition of the interface bond between the asphalt layers. The obtained values of the interface shear modulus in pavement structure with a geogrid are smaller than the ones in pavement structure without geogrid. Moreover, all of these values representing field performance are at the same order of magnitude as those from dynamic interlayer shear testing.

Copyright: © 2020 the Authors. Licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10723221
  • Published on:
    22/04/2023
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine