0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Numerical Analysis on the Behavior of Existing Tunnels Subjected to the Undercrossed Shield Tunneling at a Small Proximity

Author(s):

Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2020
Page(s): 1-12
DOI: 10.1155/2020/8823331
Abstract:

Shield excavation in a proximity to existing tunnels inevitably causes deformation and stress change of the adjacent tunnels. Based on the project of new metro line in Beijing where the shield tunnel was constructed under existing tunnel, a modified equivalent stiffness model for the existing tunnel is proposed. Based on this, a three-dimensional finite element is established, and subsequently the proposed modified equivalent stiffness model and the previous model are implemented into the finite element model (FEM), respectively, and then the effectiveness of it is verified through comparison with the field measurements. The results indicate that the modified equivalent stiffness model has excellent agreement with the monitoring value. The impacts of key parameters including undercrossing angle, vertical spacing, and soil parameters on the crown settlement of the existing tunnel are investigated. The maximum settlement of the existing tunnel crown decreases as the undercrossing angle increases. The decease of vertical spacing between the newly constructed tunnel and the existing tunnel leads to an increase of the peak value of crown settlement. As for the soil parameters, friction angle φ is the dominant parameter affecting crown settlement of the existing tunnel whereas the cohesion c is least influential. During the process of route selection, it is suggested to keep the vertical spacing between new tunnel and the existing tunnel greater than the external diameter of the new metro tunnel. For the situation of undercrossing an existing tunnel within an extremely small clearance, it is recommended to strengthen the soil as necessary.

Copyright: © Chunqing Fu and Yuchun Gao et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10540644
  • Published on:
    03/01/2021
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine