0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Numerical Analysis of the Seismic Performance of Light-Frame Timber Buildings Using a Detailed Model

Author(s): ORCID



ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 7, v. 12
Page(s): 981
DOI: 10.3390/buildings12070981
Abstract:

Timber structures have gained interest for the construction of mid-rise buildings, but their seismic performance is still a matter under development. In this study, a numerical analysis of the seismic performance of light-frame timber buildings is developed through a highly detailed model using parallel computing tools. All of the lateral-load-resisting system components and connections are modeled. Combinations of lateral load capacity distributions in structures of one, three, and five stories are studied in order to assess the effects on the global performance of different triggered failure modes through nonlinear static and dynamic analyses. The results suggest that shear bracket connections and sheathing-to-framing connections control the buildings’ responses, as well as the failure mode. For a ductile response, the lateral displacement must be dominated by the in-plane wall distortion (racking); therefore, the system must be provided with a story shear sliding stiffness and load capacity at least twice that of the walls. Furthermore, based on the pushover capacity curves, the performance limits are proposed by evaluating the stiffness degradation. Finally, the effect of the mobilized failure mode on the structural fragility is analyzed. Even though standard desktop PCs are used in this research, significant reductions in the computation effort are achieved.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10688424
  • Published on:
    13/08/2022
  • Last updated on:
    10/11/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine