Numerical Analysis of Passive Piles under Surcharge Load in Extensively Deep Soft Soil
Author(s): |
Meixiang Gu
Xiaocong Cai Qiang Fu Haibo Li Xi Wang Binbing Mao |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 27 October 2022, n. 11, v. 12 |
Page(s): | 1988 |
DOI: | 10.3390/buildings12111988 |
Abstract: |
The three-dimensional finite difference method was used in this study to analyze the deformation and stresses of a passive pile under surcharge load in extensively deep soft soil. A three-dimensional numerical model was proposed and verified by a field test. The horizontal displacements of the pile agreed well with the field results. This study investigated the pile-foundation soil interaction, the load transfer mechanism, the excess pore water pressure (EPWP), and the horizontal resistance of the foundation soil. The results show that the soil in the corner of the loading area developed a large uplift deformation, while the center of the loading area developed a large settlement. The lateral displacement of the pile decreased sharply with the increase of the depth and increased with the surcharge load. The lateral displacement of the soil was negligible when the depth exceeded 30 m. The EPWP increased in a nonlinear way with the increase of the surcharge load and accumulated with the placement of the new lift. The distribution of the lateral earth pressure in the shallow soil layer was complex, and the negative value was observed under a high surcharge load due to the suction effect. The proportion coefficient of the horizontal resistance coefficient showed much smaller value in the situation of large lateral deformation and high surcharge load. The design code overestimated the horizontal resistance of the shallow foundation soil, which should be given attention for the design and analysis of the laterally loaded structures in extensively soft soil. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
3.37 MB
- About this
data sheet - Reference-ID
10700286 - Published on:
10/12/2022 - Last updated on:
15/02/2023