0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Numerical Analysis of a High-Velocity Projectile’s Impact on Shallow Steel Tunnels in Soft Sandstone

Author(s):


Medium: journal article
Language(s): English
Published in: Infrastructures, , n. 3, v. 9
Page(s): 49
DOI: 10.3390/infrastructures9030049
Abstract:

Tunnels are underground infrastructures intended for diverse community applications as well as military applications. During impact loading due to high-velocity projectiles such as ballistic missiles, materials experience a high strain rate. Moreover, there is a superficial augmentation of the dynamic strength when geomaterials such as rock are subjected to a high strain rate. Despite this strength enhancement, tunnels can get damaged by the impact load of a projectile hitting at a high velocity if they are present at a shallow depth. The present study is an effort to comprehend the response of a shallow tunnel in soft sandstone due to the impact load by a ballistic projectile using the FEM-based software ABAQUS/CAE 6.11. The Drucker–Prager damage model and the Johnson–Cook damage model were used to define the properties of the rock mass and steel tunnel lining, respectively. The crown of the 3 m diameter tunnel was kept at different depths from 1 m to 5 m from the surface. A striking velocity of 1000 m/s at a normal position to the target was given to the projectile. The projectile caused noticeable damage to the tunnel lining up to 3 m crown depth. Increasing the crown depth had a positive effect on the maximum depth of the projectile penetration up to 4 m tunnel crown depth, after which the effect reversed, making the tunnel safer. The maximum von Mises stress on the tunnel lining reduced in a logarithmic trend with an increase in the crown depth, gradually lowering to an impact load lesser than the yield stress of the tunnel lining material after a crown depth of 4.5 m.

Copyright: © 2024 the Authors. Licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10776415
  • Published on:
    29/04/2024
  • Last updated on:
    05/06/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine