The Novelty of Using Glass Powder and Lime Powder for Producing UHPSCC
Author(s): |
Kareem S. Ghareeb
Hossam E. Ahmed Tamer H. El-Affandy Ahmed F. Deifalla Taha A. El-Sayed |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 24 April 2022, n. 5, v. 12 |
Page(s): | 684 |
DOI: | 10.3390/buildings12050684 |
Abstract: |
In recent years, UHP self-compacted concrete is an innovative category of concrete that has attached a lot of attention because of its higher durability and compressive strength than conventional concrete. So, to overcome the cost of preparation of UHPC and preservation of high-strength deformation and rheological characteristic of self-compacting concrete when replacing a part of expensive cement with three types of production waste. In addition, the problem of reducing environmental pollution is solved. In this study. recycled glass (GP) and lime (LP) powder were used as substitution materials in the manufacture of the UHPSCC. The flowability of UHPSCC was measured by slump flow, T50, V-funnel tests as an indication for the capability of filling and J-ring tests as an indication for the capability of passing. Furthermore, durability and mechanical properties were investigated. The elevated temperature effect was investigated on several UHPCSCC samples with glass (GP) and lime (LP) powder. The test results showed that the incorporation of GP and LP partially replaced cement improved the flowability of UHPSCC. The compressive, tensile, and flexural strength were enhanced by using GP till 20% replacement of cement also, the compression strength values were highly improved by using LP replacement of cement at different ages for (hot and normal curing). The highly compressive strength values for UHPSCC mixes with a 20% replacement ratio of GP and LP as cement replacement materials were 119.0 and 128.8 MPa under hot curing regimes and increased by 6.25% and 9.62%, respectively, than that of similar mixes under normal curing regimes at 90 days. The highly splitting and flexural strength values for UHPSCC 7 mix with 20% replacement level of LP and UHPSCC 9 mix with 20% replacement level of LP and GP were reported at 11.80 and 17.85 MPa which increased by 24.20% and 58.60%, respectively, compared to the control mix. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
7.07 MB
- About this
data sheet - Reference-ID
10679507 - Published on:
18/06/2022 - Last updated on:
10/11/2022