0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

A novel body centered cubic 3D auxetic chiral geometry

Author(s): ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Smart Materials and Structures, , n. 1, v. 34
Page(s): 015050
DOI: 10.1088/1361-665x/ad9dc9
Abstract:

Auxetic materials and structures have a negative Poisson's ratio (PR), which means that they expand under a longitudinal tensile loading and shrink under compressive load. This property gives them an increased shear resistance, damping and energy absorption capabilities. Chiral geometries are among the most effective auxetic structures for their ability to convert the axial loading in the rotation of their internal nodes. In the present work, a novel 3D chiral geometry is presented, and its response is investigated both experimentally and numerically. It is made of spheres placed following a Body Centered Cubic lattice; each one connected to the closest neighbors by eight ligaments. A sample was 3D-printed and mechanically tested in compression exhibiting an auxetic behavior in certain directions. A Finite Element model was then developed, successfully reproducing the outcome of the experimental tests, both in terms of force and PR. Then, a numerical testing campaign was performed on representative units constrained using periodic boundary conditions. This campaign allows to evaluate the mechanical properties of the structure as a function of its geometrical parameters. It shows to be able to exhibit an approach a PR of −1 in all the directions. Moreover, the relationship between the sphere's rotation, PR and instability was investigated.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1088/1361-665x/ad9dc9.
  • About this
    data sheet
  • Reference-ID
    10807710
  • Published on:
    17/01/2025
  • Last updated on:
    17/01/2025
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine