0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Noncontact super-resolution guided wave array imaging of subwavelength defects using a multiscale deep learning approach

Author(s):

Medium: journal article
Language(s): English
Published in: Structural Health Monitoring, , n. 4, v. 20
Page(s): 147592172094295
DOI: 10.1177/1475921720942958
Abstract:

Subwavelength defect imaging using guided waves has been known to be a difficult task mainly due to the diffraction limit and dispersion of guided waves. In this article, we present a noncontact super-resolution guided wave array imaging approach based on deep learning to visualize subwavelength defects in plate-like structures. The proposed approach is a novel hierarchical multiscale imaging approach that combines two distinct fully convolutional networks. The first fully convolutional network, the global detection network, globally detects subwavelength defects in a raw low-resolution guided wave beamforming image. Then, the subsequent second fully convolutional network, the local super-resolution network, locally resolves subwavelength-scale fine structural details of the detected defects. We conduct a series of numerical simulations and laboratory-scale experiments using a noncontact guided wave array enabled by a scanning laser Doppler vibrometer on aluminate plates with various subwavelength defects. The results demonstrate that the proposed super-resolution guided wave array imaging approach not only locates subwavelength defects but also visualizes super-resolution fine structural details of these defects, thus enabling further estimation of the size and shape of the detected subwavelength defects. We discuss several key aspects of the performance of our approach, compare with an existing super-resolution algorithm, and make recommendations for its successful implementations.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1177/1475921720942958.
  • About this
    data sheet
  • Reference-ID
    10562482
  • Published on:
    11/02/2021
  • Last updated on:
    09/07/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine