Non-Linear Analysis of Flat Slabs Prestressed with Unbonded Tendons Submitted to Punching Shear
Author(s): |
Heraldo Brigo
Luana J. Ashihara Marília G. Marques Elyson A. P. Liberati |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 24 March 2023, n. 4, v. 13 |
Page(s): | 923 |
DOI: | 10.3390/buildings13040923 |
Abstract: |
This article describes a numerical study for the evaluation of the punching shear behavior of non-adherent prestressed flat slabs without shear reinforcement. Nonlinear three-dimensional models were used, along with the finite element method (FEA) through the ATENA software in order to validate the constitutive models adopted for concrete and steel. The numerical results were compared with the experimental results. The results revealed a good agreement among load capacity, deformations, and cracking panorama, as well as the relation between numerical and experimental failure loads. After validation, a parametric study was carried out to analyze the influence of tendon spacing, slab thickness, and column rectangularity in prestressed flat slabs. Finally, the results obtained in the numerical models in relation to the failure load were compared with the estimated values for the failure load according to the main normative predictions dealing with the flat slab system. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
11.54 MB
- About this
data sheet - Reference-ID
10728338 - Published on:
30/05/2023 - Last updated on:
01/06/2023