New Soil Stress Measurement Sensor Based on the Effect of Elastic Charging of Electrodes
Author(s): |
Mikhail Kuchumov
Sergej Evtushenko |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 8 March 2022, n. 3, v. 12 |
Page(s): | 327 |
DOI: | 10.3390/buildings12030327 |
Abstract: |
The purpose of this work was to develop a prototype of a soil stress sensor using a new technique for converting mechanical quantities, with functions for measuring stress changes in soils emerging under the action of a dynamic load associated with earthworks using construction machinery, impact of transport, underground explosions and earthquakes. The development is intended to solve problems in increasing the overall efficiency of monitoring buildings and structures and measurement accuracy. Within the framework of the study, the basic requirements for primary converters of mechanical quantities operating underground were formulated. The design solutions of such sensors, which affect the quality of the information received, have been evaluated. As a result of the study, a new effect of “elastic charging of the interfacial layer of a solid metal electrode” for measuring normal stress in soils was explored and proposed eligible for this purpose. Consequently it became possible to apply this new approach to developing the soil stress measurement sensor, including the creation of its functional scheme of operation, and selection of the hardware set, construction elements and materials taking into account the nature of sensor work. Eventually, laboratory experiments obtaining numerical characteristics were carried out. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
5.14 MB
- About this
data sheet - Reference-ID
10661259 - Published on:
23/03/2022 - Last updated on:
01/06/2022