0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

A New Method to Estimate the Joint Roughness Coefficient by Back Calculation of Shear Strength

Author(s):



Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2019
Page(s): 1-15
DOI: 10.1155/2019/7897529
Abstract:

The joint roughness coefficient (JRC) is an important factor affecting the shear properties of rock joints, and its accurate estimation is a challenging task in rock engineering. Existing JRC evaluation approaches such as the empirical comparison method and the statistical parameter method have some unresolved defects. In this study, a new method is proposed for JRC estimation to overcome the deficiencies of existing approaches based on back calculation of shear strength. First, the 10 standard roughness joints are established in numerical rock samples generated by the bonded particle method (BPM). Secondly, the microscopic parameters of the intact rock and joints are calibrated, and a series of direct shear tests of joint samples are carried out under different normal stresses. Finally, the empirical relationships between shear strength and JRC are proposed under high correlation conditions. The results show that the modified smooth joint model (MSJM) is proved to better simulate the mechanical properties of rough joints than the smooth joint model (SJM). When the shear strength of target joint is substituted in the corresponding relationship, the JRC of joint along the shear direction can be conveniently obtained. In addition, the JRC values of 10 standard roughness joint profiles under shear direction of from right to left (FRTL) are obtained. By estimating the JRC of 9 target joints in the literature, it can be seen that the new method proposed in this paper can well reflect the directionality of roughness and it is convenient to apply.

Copyright: © 2019 Jiu-yang Huan et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10317017
  • Published on:
    09/07/2019
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine