A New General Formulation for the PMV Thermal Comfort Index
Author(s): |
Abdelaziz Laouadi
|
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 20 September 2022, n. 10, v. 12 |
Page(s): | 1572 |
DOI: | 10.3390/buildings12101572 |
Abstract: |
The PMV index forms the basis of international thermal comfort standards. PMV was developed based on empirical relationships between the metabolic rate of activity and the body mean skin temperature and evaporative heat loss under the comfort conditions. However, many recent studies have questioned the accuracy and reliability of the PMV predictions, particularly for the discomfort range. This paper develops a general formulation of PMV that does not involve the mean skin temperature and evaporative heat loss. The new metabolic-based predicted mean vote (MPMV) index is expressed as the difference between the metabolic rate of activity and the metabolic rate required to achieve a comfort state under the imposed environment conditions. The comfort metabolic rate is found to vary linearly with the metabolic rate required to maintain the body core and mean skin temperatures at the resting thermo-neutral state. The model constants are determined using public experimental data on thermal sensation votes of young and older people. The new formulation accounts for body core cooling to achieve comfort under hot exposures; it also addresses the overlooked non-shivering thermogenesis in the body heat balance at the comfort state and covers comfort requirements for young and older people in wakeful and sleep states. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
5.34 MB
- About this
data sheet - Reference-ID
10699770 - Published on:
11/12/2022 - Last updated on:
15/02/2023