0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

New Explicit Integration Algorithms with Controllable Numerical Dissipation for Structural Dynamics

Author(s):





Medium: journal article
Language(s): English
Published in: International Journal of Structural Stability and Dynamics, , n. 3, v. 18
Page(s): 1850044
DOI: 10.1142/s021945541850044x
Abstract:

This paper presents a new family of explicit time integration algorithms with controllable numerical dissipation for structural dynamic problems by utilizing the discrete control theory. Firstly, the equilibrium equation of the implicit Yu-[Formula: see text] algorithm is adopted, and the recursive formulas of velocity and displacement for the explicit CR algorithm are used in the algorithms. Then, the transfer function and characteristic equation of the algorithms with integration coefficients are obtained by the [Formula: see text] transformation. Furthermore, their integration coefficients are derived according to the poles condition. It was indicated that the proposed algorithms possess the advantages of second-order accuracy, self-starting, and unconditional stability for linear systems and nonlinear systems with softening stiffness. The numerical dissipation of the algorithms is controlled by the spectral radius at infinity [Formula: see text]. It was also shown that the proposed algorithms have the same poles as the Yu-[Formula: see text] algorithm, and thus the same numerical properties. Compared with the implicit Yu-[Formula: see text] algorithm, the proposed algorithms are explicit in terms of both the displacement and velocity formulas. Finally, the effectiveness of the proposed algorithms in reducing the undesired participation of higher modes for solving the dynamic responses of linear and nonlinear systems has been demonstrated.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1142/s021945541850044x.
  • About this
    data sheet
  • Reference-ID
    10352267
  • Published on:
    14/08/2019
  • Last updated on:
    14/08/2019
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine