0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

A New Dynamic Prediction Model for Underground Mining Subsidence Based on Inverse Function of Unstable Creep

Author(s):
ORCID



Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2021
Page(s): 1-9
DOI: 10.1155/2021/9922136
Abstract:

In this study, an improved Knothe time function model is established via analogical reasoning from a phenomenological perspective, based on an inverse “Hohai creep model” function, in accordance with the antisymmetric relationship between the unstable creep curve and surface dynamic subsidence curve. An empirical method and fitting method are proposed to determine the parameters of the improved model based on the availability of measured field data. The accuracies of the two models are compared with monitored data from eight monitoring points in the main strike profile of the Guotun coal mine subsidence basin. The results show that the improved model can more accurately reflect the dynamic process of surface subsidence. The average relative standard deviation of the improved model is only 4.9%, which is far lower than the 23.1% associated with the Knothe model. This verifies the improved model’s accuracy and reliability. The model parameters for different monitoring stations obtained using the fitting method are similar, which shows that the model parameters are regular and can be easily applied.

Copyright: © Hua Cheng et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10609850
  • Published on:
    08/06/2021
  • Last updated on:
    17/02/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine